Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1177857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197203

RESUMEN

Streptococcus pneumoniae is capable of randomly switching their genomic DNA methylation pattern between six distinct bacterial subpopulations (A-F) via recombination of a type 1 restriction-modification locus, spnIII. These pneumococcal subpopulations exhibit phenotypic changes which favor carriage or invasive disease. In particular, the spnIIIB allele has been associated with increased nasopharyngeal carriage and the downregulation of the luxS gene. The LuxS/AI-2 QS system represent a universal language for bacteria and has been linked to virulence and biofilm formation in S. pneumoniae. In this work, we have explored the link between spnIII alleles, the luxS gene and virulence in two clinical pneumococcal isolates from the blood and cerebrospinal fluid (CSF) of one pediatric meningitis patient. The blood and CSF strains showed different virulence profiles in mice. Analysis of the spnIII system of these strains recovered from the murine nasopharynx showed that the system switched to different alleles commensurate with the initial source of the isolate. Of note, the blood strain showed high expression of spnIIIB allele, previously linked with less LuxS protein production. Importantly, strains with deleted luxS displayed different phenotypic profiles compared to the wildtype, but similar to the strains recovered from the nasopharynx of infected mice. This study used clinically relevant S. pneumoniae strains to demonstrate that the regulatory network between luxS and the type 1 restriction-modification system play a key role in infections and may support different adaptation to specific host niches.


Asunto(s)
Meningitis Neumocócica , Ratones , Animales , Enzimas de Restricción-Modificación del ADN/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/metabolismo , Streptococcus pneumoniae , Biopelículas
2.
mBio ; 13(5): e0236722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125268

RESUMEN

Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development. IMPORTANCE The target pathogen of this study, Streptococcus pneumoniae, kills over 300,000 children <5 years of age every single year, and is the leading cause of pneumonia-associated mortality globally. While the capsular polysaccharide (CPS)-based vaccine Prevnar13 prevents serious illness caused by 13 serotypes, ongoing Prevnar13 use has driven the emergence of nonincluded serotypes as major causes of infection and disease. To overcome this issue, we have developed a next-generation pneumococcal vaccine conferring serotype-independent protection. This vaccine shows equivalent or superior efficacy to Prevnar13, and performance was heightened when our vaccine was administered with no adjuvant. These findings should be considered for similar vaccines in development, as the benefit of adjuvant is often assumed and its automatic inclusion may be limiting product efficacy, resulting in potential abandonment of viable vaccine candidates, or prolonging their time to clinic.


Asunto(s)
Anticuerpos Antibacterianos , Infecciones Neumocócicas , Ratones , Conejos , Animales , Vacunas Neumococicas , Streptococcus pneumoniae , Vacunas Conjugadas , Serogrupo , Infecciones Neumocócicas/prevención & control
3.
Front Cell Infect Microbiol ; 12: 866259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433506

RESUMEN

Streptococcus pneumoniae is the leading cause of bacterial paediatric meningitis after the neonatal period worldwide, but the bacterial factors and pathophysiology that drive pneumococcal meningitis are not fully understood. In this work, we have identified differences in raffinose utilization by S. pneumoniae isolates of identical serotype and sequence type from the blood and cerebrospinal fluid (CSF) of a single pediatric patient with meningitis. The blood isolate displayed defective raffinose metabolism, reduced transcription of the raffinose utilization pathway genes, and an inability to grow in vitro when raffinose was the sole carbon source. The fitness of these strains was then assessed using a murine intranasal infection model. Compared with the CSF isolate, mice infected with the blood isolate displayed higher bacterial numbers in the nose, but this strain was unable to invade the ears of infected mice. A premature stop codon was identified in the aga gene in the raffinose locus, suggesting that this protein likely displays impaired alpha-galactosidase activity. These closely related strains were assessed by Illumina sequencing, which did not identify any single nucleotide polymorphisms (SNPs) between the two strains. However, these wider genomic analyses identified the presence of an alternative alpha-galactosidase gene that appeared to display altered sequence coverage between the strains, which may account for the observed differences in raffinose metabolic capacity. Together, these studies support previous findings that raffinose utilization capacity contributes to disease progression, and provide insight into a possible alternative means by which perturbation of this pathway may influence the behavior of pneumococci in the host environment, particularly in meningitis.


Asunto(s)
Streptococcus pneumoniae , alfa-Galactosidasa , Animales , Niño , Humanos , Ratones , Fenotipo , Rafinosa/metabolismo , Serogrupo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
4.
Pathogens ; 11(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35215159

RESUMEN

The LuxS protein, encoded by luxS, is required for the production of autoinducer 2 (AI-2) in Streptococcus pneumoniae. The AI-2 molecule serves as a quorum sensing signal, and thus regulates cellular processes such as carbohydrate utilisation and biofilm formation, as well as impacting virulence. The role of luxS in S. pneumoniae biology and lifestyle has been predominantly assessed in the laboratory strain D39. However, as biofilm formation, which is regulated by luxS, is critical for the ability of S. pneumoniae to cause otitis media, we investigated the role of luxS in a middle ear isolate, strain 947. Our results identified luxS to have a role in prevention of S. pneumoniae transition from colonisation of the nasopharynx to the ear, and in facilitating adherence to host epithelial cells.

5.
Cell Rep ; 38(2): 110202, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021083

RESUMEN

Streptococcus pneumoniae is the primary cause of community-acquired bacterial pneumonia with rates of penicillin and multidrug-resistance exceeding 80% and 40%, respectively. The innate immune response generates a variety of antimicrobial agents to control infection, including zinc stress. Here, we characterize the impact of zinc intoxication on S. pneumoniae, observing disruptions in central carbon metabolism, lipid biogenesis, and peptidoglycan biosynthesis. Characterization of the pivotal peptidoglycan biosynthetic enzyme GlmU indicates a sensitivity to zinc inhibition. Disruption of the sole zinc efflux pathway, czcD, renders S. pneumoniae highly susceptible to ß-lactam antibiotics. To dysregulate zinc homeostasis in the wild-type strain, we investigated the safe-for-human-use ionophore 5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2). PBT2 rendered wild-type S. pneumoniae strains sensitive to a range of antibiotics. Using an invasive ampicillin-resistant strain, we demonstrate in a murine pneumonia infection model the efficacy of PBT2 + ampicillin treatment. These findings present a therapeutic modality to break antibiotic resistance in multidrug-resistant S. pneumoniae.


Asunto(s)
Resistencia a la Ampicilina/fisiología , Streptococcus pneumoniae/metabolismo , Zinc/metabolismo , Ampicilina/farmacología , Resistencia a la Ampicilina/genética , Animales , Antibacterianos/farmacología , Clioquinol/análogos & derivados , Clioquinol/farmacología , Modelos Animales de Enfermedad , Femenino , Homeostasis , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Neumonía
6.
mBio ; 12(3): e0107021, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34134514

RESUMEN

Acinetobacter baumannii is one of the world's most problematic nosocomial pathogens. The combination of its intrinsic resistance and ability to acquire resistance markers allow this organism to adjust to antibiotic treatment. Despite being the primary barrier against antibiotic stress, our understanding of the A. baumannii membrane composition and its impact on resistance remains limited. In this study, we explored how the incorporation of host-derived polyunsaturated fatty acids (PUFAs) is associated with increased antibiotic susceptibility. Functional analyses of primary A. baumannii efflux systems indicated that AdeB-mediated antibiotic resistance was impacted by PUFA treatment. Molecular dynamics simulations of AdeB identified a specific morphological disruption of AdeB when positioned in the PUFA-enriched membrane. Collectively, we have shown that PUFAs can impact antibiotic efficacy via a vital relationship with antibiotic efflux pumps. Furthermore, this work has revealed that A. baumannii's unconditional desire for fatty acids may present a possible weakness in its multidrug resistance capacity. IMPORTANCE Antimicrobial resistance is an emerging global health crisis. Consequently, we have a critical need to prolong our current arsenal of antibiotics, in addition to the development of novel treatment options. Due to their relatively high abundance at the host-pathogen interface, PUFAs and other fatty acid species not commonly synthesized by A. baumannii may be actively acquired by A. baumannii during infection and change the biophysical properties of the membrane beyond that studied in standard laboratory culturing media. Our work illustrates how the membrane phospholipid composition impacts membrane protein function, which includes an important multidrug efflux system in extensively-drug-resistant A. baumannii. This work emphasizes the need to consider including host-derived fatty acids in in vitro analyses of A. baumannii. On a broader scope, this study presents new findings on the potential health benefits of PUFA in individuals at risk of contracting A. baumannii infections or those undergoing antibiotic treatment.


Asunto(s)
Acinetobacter baumannii/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Transporte de Membrana/química , Acinetobacter baumannii/química , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Ácidos Grasos Insaturados/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular
7.
mBio ; 12(3): e0092821, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34134515

RESUMEN

Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium's lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here, we studied the mouse fatty acid landscape prior to and after infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesizes its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy. IMPORTANCE Acinetobacter baumannii is one of the world's most problematic superbugs and is associated with significant morbidity and mortality in the hospital environment. The critical need for new antimicrobial strategies is recognized, but our understanding of its behavior and adaptation to a changing environment during infection is limited. Here, we investigated the role of fatty acids at the host-pathogen interface using a mouse model of disease. We provide comprehensive insights into the bacterial membrane composition when the bacteria colonize the pleural cavity. Furthermore, we show that A. baumannii heavily relies upon making its own fatty acids when residing in the blood, whereas the bacterium favors fatty acid acquisition in most other host niches. Our new knowledge aids in understanding the importance of host fatty acids in infectious diseases. Furthermore, fatty acid synthesis is an attractive target for the development of new antimicrobial strategies, but our work emphasizes the critical need to understand microbial lipid homeostasis before this can be deemed suitable.


Asunto(s)
Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Membrana Celular/química , Ácidos Grasos/biosíntesis , Homeostasis , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/patogenicidad , Adaptación Fisiológica , Animales , Membrana Celular/metabolismo , Ácidos Grasos/análisis , Humanos , Lipidómica , Ratones , Fosfolípidos/análisis
8.
ACS Infect Dis ; 7(8): 2221-2228, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34100578

RESUMEN

Maintaining optimal fluidity is essential to ensure adequate membrane structure and function under different environmental conditions. We apply integrated molecular approaches to characterize two desaturases (DesA and DesB) and define their specific roles in unsaturated fatty acid (UFA) production in Acinetobacter baumannii. Using a murine model, we reveal DesA to play a minor role in colonization of the respiratory tract, whereas DesB is important during invasive disease. Furthermore, using transcriptomic and bioinformatic analyses, a global regulator involved in fatty acid homeostasis and members of its regulon are characterized. Collectively, we show that DesA and DesB are primary contributors to UFA production in A. baumannii with infection studies illustrating that these distinct desaturases aid in the bacterium's ability to survive in multiple host niches. Hence, this study provides novel insights into the fundamentals of A. baumannii lipid biology, which contributes to the versatility of this critical bacterial pathogen.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Animales , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados , Ratones
9.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33046563

RESUMEN

Streptococcus pneumoniae (the pneumococcus) is a formidable human pathogen that is capable of asymptomatically colonizing the nasopharynx. Progression from colonization to invasive disease involves adaptation to distinct host niches, which vary markedly in the availability of key nutrients such as sugars. We previously reported that cell-cell signaling via the autoinducer 2 (AI-2)/LuxS quorum-sensing system boosts the capacity of S. pneumoniae to utilize galactose as a carbon source by upregulation of the Leloir pathway. This resulted in increased capsular polysaccharide production and a hypervirulent phenotype. We hypothesized that this effect was mediated by phosphorylation of GalR, the transcriptional activator of the Leloir pathway. GalR is known to possess three putative phosphorylation sites, S317, T319, and T323. In the present study, derivatives of S. pneumoniae D39 with putative phosphorylation-blocking alanine substitution mutations at each of these GalR sites (singly or in combination) were constructed. Growth assays and transcriptional analyses revealed complex phenotypes for these GalR mutants, with impacts on the regulation of both the Leloir and tagatose 6-phosphate pathways. The alanine substitution mutations significantly reduced the capacity of pneumococci to colonize the nasopharynx, middle ear, and lungs in a murine intranasal challenge model.IMPORTANCE Pneumococcal survival in the host and capacity to transition from a commensal to a pathogenic lifestyle are closely linked to the organism's ability to utilize specific nutrients in distinct niches. Galactose is a major carbon source for pneumococci in the upper respiratory tract. We have shown that both the Leloir and tagatose 6-phosphate pathways are necessary for pneumococcal growth in galactose and demonstrated GalR-mediated interplay between the two pathways. Moreover, the three putative phosphorylation sites in the transcriptional regulator GalR play a critical role in galactose metabolism and are important for pneumococcal colonization of the nasopharynx, middle ear, and lungs.


Asunto(s)
Galactosa/metabolismo , Mutación/genética , Proteínas Represoras/genética , Streptococcus pneumoniae/genética , Animales , Oído Medio/microbiología , Femenino , Galactosa/genética , Expresión Génica , Humanos , Pulmón/microbiología , Ratones , Mutagénesis Sitio-Dirigida , Nasofaringe/microbiología , Fosforilación , Proteínas Represoras/química , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/metabolismo
10.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32205403

RESUMEN

To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.


Asunto(s)
Homeostasis , Interacciones Huésped-Patógeno , Fenómenos Fisiológicos de la Nutrición , Fosfatos/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Susceptibilidad a Enfermedades , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Metales/metabolismo
11.
PLoS Pathog ; 15(8): e1007957, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31437249

RESUMEN

Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences.


Asunto(s)
Suplementos Dietéticos , Modelos Animales de Enfermedad , Enfermedades Pulmonares/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Virulencia/efectos de los fármacos , Zinc/administración & dosificación , Animales , Femenino , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Ratones , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo
12.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348827

RESUMEN

During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.


Asunto(s)
Manganeso/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Interacciones Huésped-Patógeno , Complejo de Antígeno L1 de Leucocito/metabolismo , Estrés Oxidativo , Virulencia
13.
mBio ; 9(6)2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538186

RESUMEN

The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you."


Asunto(s)
Antibacterianos/farmacología , Clioquinol/análogos & derivados , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Bacterias Grampositivas/efectos de los fármacos , Ionóforos/metabolismo , Zinc/metabolismo , Clioquinol/metabolismo , Pruebas de Sensibilidad Microbiana
14.
mBio ; 8(5)2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089427

RESUMEN

During infection, the host sequesters essential nutrients, such as zinc, to combat invading microbes. Despite the ability of the immune effector protein calprotectin to bind zinc with subpicomolar affinity, Staphylococcus aureus is able to successfully compete with the host for zinc. However, the zinc importers expressed by S. aureus remain unknown. Our investigations have revealed that S. aureus possesses two importers, AdcABC and CntABCDF, which are induced in response to zinc limitation. While AdcABC is similar to known zinc importers in other bacteria, CntABCDF has not previously been associated with zinc acquisition. Concurrent loss of the two systems severely impairs the ability of S. aureus to obtain zinc and grow in zinc-limited environments. Further investigations revealed that the Cnt system is responsible for the ability of S. aureus to compete with calprotectin for zinc in culture and contributes to acquisition of zinc during infection. The cnt locus also enables S. aureus to produce the broad-spectrum metallophore staphylopine. Similarly to the Cnt transporter, loss of staphylopine severely impairs the ability of S. aureus to resist host-imposed zinc starvation, both in culture and during infection. Further investigations revealed that together staphylopine and the Cnt importer function analogously to siderophore-based iron acquisition systems in order to facilitate zinc acquisition by S. aureus Analogous systems are found in a broad range of Gram-positive and Gram-negative bacterial pathogens, suggesting that this new type of zinc importer broadly contributes to the ability of bacteria to cause infection.IMPORTANCE A critical host defense against infection is the restriction of zinc availability. Despite the subpicomolar affinity of the immune effector calprotectin for zinc, Staphylococcus aureus can successfully compete for this essential metal. Here, we describe two zinc importers, AdcABC and CntABCDF, possessed by S. aureus, the latter of which has not previously been associated with zinc acquisition. The ability of S. aureus to compete with the host for zinc is dependent on CntABCDF and the metallophore staphylopine, both in culture and during infection. These results expand the mechanisms utilized by bacteria to obtain zinc, beyond Adc-like systems, and demonstrate that pathogens utilize strategies similar to siderophore-based iron acquisition to obtain other essential metals during infection. The staphylopine synthesis machinery is present in a diverse collection of bacteria, suggesting that this new family of zinc importers broadly contributes to the ability of numerous pathogens to cause infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Imidazoles/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Complejo de Antígeno L1 de Leucocito/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Sideróforos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
15.
Mol Microbiol ; 104(4): 636-651, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28249108

RESUMEN

Zinc is an essential trace element that serves as a catalytic cofactor in metalloenzymes and a structural element in proteins involved in general metabolism and cellular defenses of pathogenic bacteria. Despite its importance, high zinc levels can impair cellular processes, inhibiting growth of many pathogenic bacteria, including the major respiratory pathogen Streptococcus pneumoniae. Zinc intoxication is prevented in S. pneumoniae by expression of the zinc exporter CzcD, whose expression is activated by the novel TetR-family transcriptional zinc-sensing regulator SczA. How zinc bioavailability triggers activation of SczA is unknown. It is shown here through functional studies in S. pneumoniae that an unannotated homodimeric TetR from S. agalactiae (PDB 3KKC) is the bona fide zinc efflux regulator SczA, and binds two zinc ions per protomer. Mutagenesis analysis reveals two metal binding sites, termed A and B, located on opposite sides of the SczA C-terminal regulatory domain. In vivo, the A- and B-site SczA mutant variants impact S. pneumoniae resistance to zinc toxicity and survival in infected macrophages. A model is proposed for S. pneumoniae SczA function in which both A- and B-sites were required for transcriptional activation of czcD expression, with the A-site serving as the evolutionarily conserved intracellular sensing site in SczAs.


Asunto(s)
Zinc/metabolismo , Zinc/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Disponibilidad Biológica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Intoxicación por Metales Pesados , Metales Pesados/metabolismo , Intoxicación/genética , Intoxicación/metabolismo , Streptococcus agalactiae/metabolismo , Streptococcus pneumoniae/metabolismo , Resistencia a la Tetraciclina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...